Specifications for Approval

Customer Part No．：
Inhere Part No．：LRGB02793－R01
Part Name： 5 mm 草帽头有边水清透明全彩共阳 LED
Spec Issue Date：2018－07－21
Revision No．：A

To Customer：

We submit herewith the following information for your approval：
－Sample
\square OQC Inspection Record
LED Dimension
■Electrical Characteristics Curve
Internal Circuit Diagram
■Soldering recommendation

Prepared by：Lily Checked by：Tom Approved by：Wangxiaojun
Date：2018－07－21
Date：2018－07－21
Date：2018－07－21

Customer Opinion

Approve and no objectionReject with the following reason：东莞市银河光电有限公司

ค（light for your mind

银河光电

SPECIFICATIONS

Features

- High speed response.
- High reliability and long life.
- Low power consumption.
- Available in red, orange, yellow, yellow-green, green, blue, white, pink*
- Suitable for pulse operation.
- RoHS compliant.

Description

- The Red source color devices are made with AIGaInP on GaAs Light Emitting Diode.
- The Green source color devices are made with InGaN/GaN on $\mathrm{Al}_{2} \mathrm{O}_{3}$ Light Emitting Diode.
- The Blue source color devices are made with InGaN/GaN on $\mathrm{Al}_{2} \mathrm{O}_{3}$ Light Emitting Diode

Applications

- Consumer electronics
- Display boards

Indicators

Dimensions

Notes:

1. All dimensions are in millimeters (inches).
2. Tolerance is ± 0.25 ($0.01^{\prime \prime}$) unless otherwise noted.
3. Lead spacing is measured where the leads emerge from the package.
4. Specifications are subject to change without notice.

Selection Guide

Part No.	Dice	Emitting Color	Lens Type	$\mathrm{I}_{\mathrm{V}}(\mathrm{mcd}) @ 20 \mathrm{~mA}$		Viewing Angle(${ }^{\circ}$)
				Min.	Typ.	$2 \theta_{\frac{1}{2}}$
LRGB02793-R01	AlGalnP	Red	Water Clear	350	550	90
	InGaN/GaN	Green		1000	1750	
	InGaN/GaN	Blue		200	300	

Note:

1. $\theta_{\frac{1}{2}}$ is the angle from optical centerline where the luminous intensity is $\frac{1}{2}$ the optical centerline value.
2. The tolerance of luminous intensity (Iv) is $\pm 15 \%$.

Electrical / Optical Characteristics (at $\mathbf{T}_{\mathrm{a}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Parameter	Symbol	Color	Value			Unit	Test Condition
			Min.	Typ.	Max.		
Forward Voltage	V_{F}	Red	1.8	--	2.5 3.5 3.5	V	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
		Green	2.7				
		Blue	2.8				
Dominant Wavelength	$\lambda_{\text {D }}$	Red	620	--	630	$n m$	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
		Green	520		530		
		Blue	460		470		
Reverse Current	I_{R}	Red				$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$
		Green	--	--	10		
		Blue					

Note:

1. The tolerance of forward voltage is $\pm 0.05 \mathrm{~V}$.
2. The tolerance of dominant wavelength is $\pm 1 \mathrm{~nm}$.
3. This specification is a standard specification of our factory, can make in accordance with customer's special requirement.

Absolute Maximum Ratings (at $\mathbf{T}_{\mathrm{a}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Parameter	Symbol	Value			Unit
		R	G	B	
Power Dissipation	P_{D}	75	105	105	mW
Pulse Forward Current(Duty $1 / 10$ @ 1 kHz)	I_{FP}	100			mA
Forward Current	I_{F}	30			mA DC
Reverse Voltage	V_{R}	5			V DC
Operating Temperature	$\mathrm{T}_{\text {opr }}$	$-40 \sim+85$			${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	$-40 \sim+85$			${ }^{\circ} \mathrm{C}$
Soldering Temperature	$\mathrm{T}_{\text {sol }}$	$260^{\circ} \mathrm{C}$ for 5 sec			

Reliability Testing Conditions

NO	Test Item				

SPATIAL DISTRIBUTIDN

FIRWARD CURRENT $V s_{\text {, }}$
FIRWARD VILTAGE

If-Forward Current (mA) LUMINDUS INTENSITY Vs.
FIRWARD CURRENT

sPATIAL DISTRIBUTIUN

FIRWARD CURRENT FIRWARD vLLTAGE

If-Forward Current (mA) LUMINDUS INTENSITY Vs. FIRWARD CURRENT

SPATIAL DISTRIBUTIDN

1. Soldering Condition
a. When soldering, leave the minimum clearance between the bottom of the resin and the soldering point.
b. Do not solder closer than 3 mm from the base of the epoxy bulb.
c. Maximum allowance soldering conditions are: Dip Soldering: $260^{\circ} \mathrm{C}$ max., 5 sec Max., 1 time. Soldering iron: $350^{\circ} \mathrm{C}$ max., 5 sec Max., 1 time
d. Contact between molten solder and the resin shall be avoided.
e. During soldering, do not put any stress on the lead frame, particularly when heated.

2. Lead frame Forming and Use

a. When forming leads, the leads shall be bent at a point at least 3 mm from the base of epoxy bulb. Do not use the base of the lead frame as a fulcrum during lead forming.
b. Lead forming shall be done before soldering.
c. Do not apply any bending stress to the base of the lead. The stress to the base may damage the LED's characteristics or it may break the LED.
d. When mounting the LED onto a printed circuit board, the holes on the PCB shall be exactly aligned with the leads of the LED. If the LED is mounted with stress at the leads, it may cause deterioration of the epoxy resin and this may degrade the LED.
e. Avoid condition which may cause the LED to corrode, tarnish or discolor. This corrosion or discoloration may cause difficulty during soldering operation. It is recommended that the LED be used as soon as possible.
f. Avoid rapid transition in ambient temperature, especially in high humidity environment.

3. Static Electricity

a. The product is sensitive to static electricity charge, and user is required to handle it with care. Particularly, if a current and/or voltage which exceed the Absolute Maximum Rating of the Product is applied, the overflow in energy may cause damage to, or possibly result in electrical destruction of, the LED. The customer is requested to take adequate countermeasure against static electricity charge and surge when handling it.
b. Proper grounding, use of conductive mat, conductive working uniform and shoes, and conductive containers are effective against static electricity and surge.
c. Ground low-resistance area where the product contacts, such as metal surface of the work platform, with a conductive mat (surface resistance $10^{6} \sim 10^{9} \mathrm{ohm}$).
d. A tip of soldering iron is requested to be grounded. An ionizer shall also be installed where risk of static generation is high.

Notes:

1. The above specification and dimensions may be modified for product improvement. Inhere reserves the right to change the specification without notice.
2. When using this product, please observe the Absolute Maximum Ratings and the instructions in the specification sheets. Inhere assumes no responsibility for any damage resulting from use of the product that does not comply with the instructions.
