Specifications for Approval

Customer Part No.:

Inhere Part No.: LNW12643-001

Part Name: 2*3*4 方形无边水清透明暖白光 LED

Spec Issue Date: 2018-07-18

Revision No.: A

To Customer:		
We submit herewit	h the following information for yo	our approval:
Sample	□OQC Inspection Record	LED Dimension
Electrical Char	acteristics Curve	rnal Circuit Diagram
Soldering record	mmendation	
Prepared by: Lily	Checked by: Tom	Approved by: Wangxiaojun
Date: 2018-07-18	Date: 2018-07-18	Date: 2018-07-18
Customer Opinic	n	

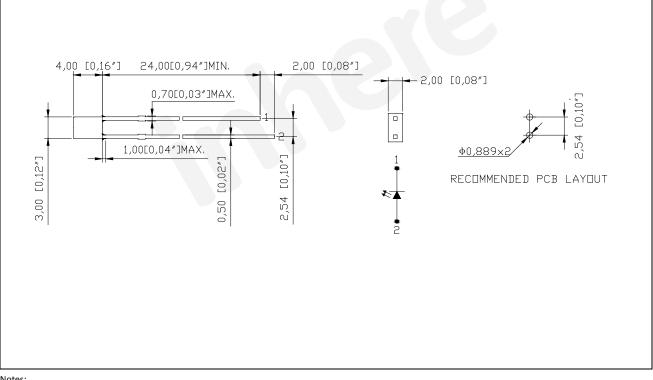
- Approve and no objection
- Reject with the following reason:

东莞市银河光电有限公司 DongGuan Inhere Opto CO.,LTD. 地址:东莞市莞城科技园D幢 ADD:Guancheng Science & Technology Park, DongGuan TEL: 0769-23320868 FAX: 0769-23320878 E-mail: bill@inhereopto.com Http://www.inhereopto.com

SPECIFICATIONS

Features

- High speed response.
- High reliability and long life. •
- Low power consumption. •
- Available in red, orange, yellow, yellow-green, green, blue, white, pink* •
- Suitable for pulse operation.
- RoHS compliant.


Description

• The White source color devices are made with InGaN/GaN on Al₂O₃ Light Emitting Diode.

Applications

- **Consumer electronics**
- **Display boards** •
- Indicators

Dimensions

Notes:

- 1. All dimensions are in millimeters (inches).
- 2. Tolerance is ±0.25 (0.01") unless otherwise noted.
- 3. Lead spacing is measured where the leads emerge from the package.
- 4. Specifications are subject to change without notice.

Selection Guide

Part No.	Dice	Long Type	I _v (mcd) @ 20mA		Viewing Angle(°)	
Part No.	Dice	Lens Type	Min.	Тур.	$2\theta_{\frac{1}{2}}$	
LNW12643-001	InGaN/GaN	Water Clear	500	1500	120	

Note:

 $1.\theta_{\frac{1}{2}}$ is the angle from optical centerline where the luminous intensity is $\frac{1}{2}$ the optical centerline value.

2. The tolerance of luminous intensity (Iv)is $\pm 15\,\%$.

Electrical / Optical Characteristics (at $T_a = 25^{\circ}C$)

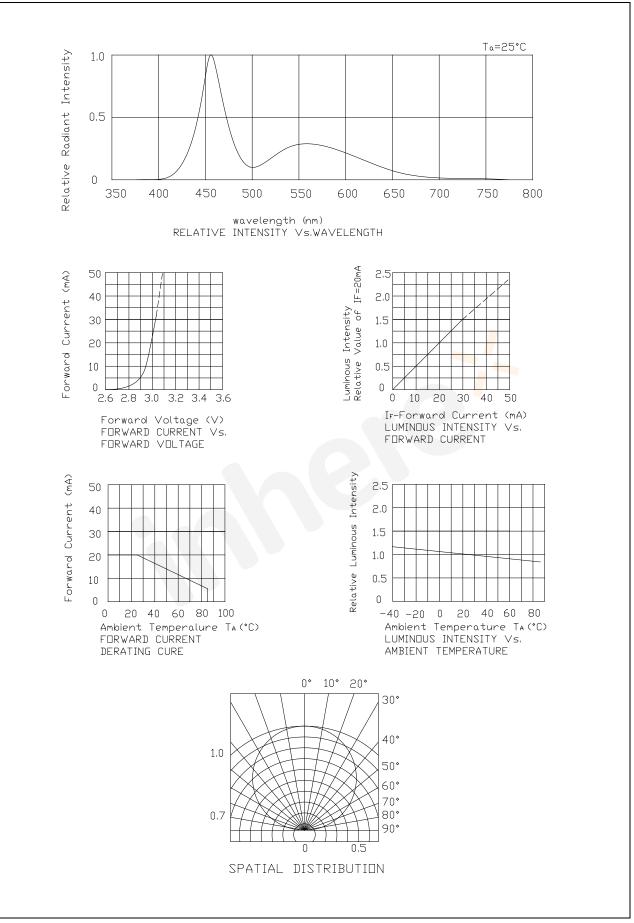
Parameter	Symbol	Value			Unit	Test Condition	
Parameter	Symbol	Min.	Тур.	Max.	Unit	lest condition	
Forward Voltage	V _F	2.8		3.6	V	$I_{\rm F}$ = 20mA	
	х		0.45			$I_F = 20mA$	
CIE	Y		0.45				
Reverse Current	I _R			10	μΑ	$V_R = 5V$	

Note:

1. The tolerance of forward voltage is \pm 0.05V.

2. The tolerance of XY is \pm 0.03.

3. This specification is a standard specification of our factory, can make in accordance with customer's special requirement.


Absolute Maximum Ratings (at T_a = 25°C)

Parameter	Symbol	Value	Unit
Power Dissipation	P _D	108	mW
Pulse Forward Current(Duty 1/10 @ 1 kHz)	I _{FP}	100	mA
Forward Current	I _F	30	mA DC
Reverse Voltage	V _R	5	V DC
Operating Temperature	T _{opr}	-40 ~ +85	°C
Storage Temperature	T _{stg}	-40 ~ +85	°C
Soldering Temperature	T _{sol}	260°C	for 5 sec

Reliability Testing Conditions

NO	Test Item	Test Conditions	Duration	Sample	Ac/Re
1	Temperature Cycle	$-40^{\circ}\mathbb{C} \pm 5^{\circ}\mathbb{C} \sim 25^{\circ}\mathbb{C} \pm 5^{\circ}\mathbb{C} \sim 100^{\circ}\mathbb{C} \pm 5^{\circ}\mathbb{C} \sim 25^{\circ}\mathbb{C} \pm 5^{\circ}\mathbb{C}$ $30 \text{min} \qquad 5 \text{min} \qquad 30 \text{min} \qquad 5 \text{min}$	100 cycles	22	0/1
2	High Temperature Storage	Ta=100℃±5℃	1000 hours	22	0/1
3	Temperature & Humidity Test	Ta=85℃±5℃ RH=85%±5%	1000 hours	22	0/1
4	Low Temperature Storage	Ta=-40 ℃±5℃	1000 hours	22	0/1
5	Operating Life Test	Ta=25±5℃ DC IF=20mA	1000 hours	22	0/1
6	Solder Heat	Tsol=260±5℃,5s	1 times	22	0/1
7	Thermal Shock	-40±5℃→100±5℃ 15min 15min	100 cycles	22	0/1

Optical Characteristic Curves

Part No. : LNW12643-001 Prepared by: Lily Rev.: A Checked by: Tom Date: 2018-07-18 Approved by: Wangxiaojun

Precautions in Use

1.	Sol	oldering Condition					
	a.	When soldering, leave the minimum clearance between the bottom of the resin and the soldering point.					
	b.	Do not solder closer than 3mm from the base of the epoxy bulb.					
	с.	Maximum allowance soldering conditions are:					
	с.	Dip Soldering: 260°C max., 5 sec Max., 1 time.					
		Soldering iron: 350°C max., 5 sec Max., 1 time					
	Ч	Contact between molten solder and the resin shall be avoided.					
	d.						
	e.	During soldering, do not put any stress on the lead frame, particularly when heated.					
2.	Lea	ad frame Forming and Use					
	a.	When forming leads, the leads shall be bent at a point at least 3mm from the base of epoxy bulb. Do					
		not use the base of the lead frame as a fulcrum during lead forming.					
	b.	Lead forming shall be done before soldering.					
	c.	Do not apply any bending stress to the base of the lead. The stress to the base may damage the LED's					
		characteristics or it may break the LED.					
	d.	When mounting the LED onto a printed circuit board, the holes on the PCB shall be exactly aligned with					
		the leads of the LED. If the LED is mounted with stress at the leads, it may cause deterioration of the					
		epoxy resin and this may degrade the LED.					
	e.	Avoid condition which may cause the LED to corrode, tarnish or discolor. This corrosion or discoloration					
		may cause difficulty during soldering operation. It is recommended that the LED be used as soon as					
		possible.					
	f.	Avoid rapid transition in ambient temperature, especially in high humidity environment.					
3.	Sta	tic Electricity					
	a.	The product is sensitive to static electricity charge, and user is required to handle it with care.					
		Particularly, if a current and/or voltage which exceed the Absolute Maximum Rating of the Product is					
		applied, the overflow in energy may cause damage to, or possibly result in electrical destruction of, the					
		LED. The customer is requested to take adequate countermeasure against static electricity charge and					
		surge when handling it.					
	b.	Proper grounding, use of conductive mat, conductive working uniform and shoes, and conductive					
		containers are effective against static electricity and surge.					
	c.	Ground low-resistance area where the product contacts, such as metal surface of the work platform,					
		with a conductive mat (surface resistance $10^6{\sim}10^9$ ohm).					
	d.	A tip of soldering iron is requested to be grounded. An ionizer shall also be installed where risk of static					
		generation is high.					
Not	tes:						
1.		e above specification and dimensions may be modified for product improvement. Inhere reserves the right to					
		inge the specification without notice.					
2.		ien using this product, please observe the Absolute Maximum Ratings and the instructions in the specification					
		ets. Inhere assumes no responsibility for any damage resulting from use of the product that does not comply					
		h the instructions.					